Neutropenic Sepsis: Critical Issues and Treatment Challenges

Stephen M. Pastores, MD, FACP, FCCP, FCCM
Program Director, Critical Care Medicine
Department of Anesthesiology and Critical Care Medicine
Memorial Sloan Kettering Cancer Center
Professor of Medicine in Anesthesiology and Medicine
Weill Cornell Medical College
Disclosures

• Grant Support
 • Spectral Medical (EUPHRATES Sepsis Trial)
 • Bayer HealthCare (Inhaled amikacin in mechanically ventilated patients with gram-negative pneumonia)
Outline

- Definition, Epidemiology and Mortality of neutropenic sepsis
- Practice guidelines for antimicrobial therapy
- Biomarkers for febrile neutropenia
- Novel therapeutic approaches (IL-7, anti-PD1) for managing sepsis-immunosuppression
The Problem of Neutropenia

- Rising number of immunocompromised pts
- Changing epidemiology of infection
- Growing resistance to current antimicrobials
- Increasing risk of treatment-related infections
Neutropenic Sepsis

• Sepsis developing in patients receiving anticancer therapy with neutrophil count $<500/\text{mm}^3$ or $\leq 1000 \text{ mm}^3$ with expectation of further decline

AND

• Fever $\geq 38.3^\circ \text{C (101}^\circ \text{ F})$ or febrile state $(\geq 38.0^\circ \text{C (100.4}^\circ \text{ F})$ for ≥ 1 hour

• Other S/Sx of significant sepsis
Factors Associated with Risk of Infection

- Duration and severity of neutropenia
- Type and intensity of chemotherapy regimen
- Altered phagocytic, cellular, or humoral immunity
- Breach of skin or mucosal barriers
- Catheters and other foreign bodies
- Underlying disease or therapy
- Corticosteroids
The total number of deaths has more than doubled from 2001-2010.

Mortality of Neutropenic Sepsis

- The total number of deaths has more than doubled from 2001-2010.
- Majority of deaths occur in the 65 to 79 age range.

Survival in neutropenic patients with severe sepsis/septic shock

Hospital survival 57% vs. 41%, p = .001

n=428

Survival of septic shock in cancer patients

n=3437
Mortality Trends in Critically Ill Cancer Patients

Advances in ICU supportive care
Neutropenic Sepsis: Clinical and Microbiologic Features

- Signs and symptoms of infection are often lacking.
- Fever alone may be the only indicator of infection.
 - Infection vs. noninfectious causes (ex: drugs, blood products, engraftment, cytokines)
- Common sites of infection: GI tract, lung, skin
 - ~10-25% will have a documented BSI; most occur in settings of prolonged or profound neutropenia (ANC<100).
- Rarely, fungal infections can account for first fevers.

Kalil AC, Opal SM. Curr Infect Dis Rep 2015;17:32
Common Bacterial Pathogens in Neutropenic Patients

<table>
<thead>
<tr>
<th>Gram-positive Pathogens</th>
<th>Gram-negative Pathogens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coagulase-negative staphylococci (most common blood isolates in most centers, low virulence)</td>
<td>Escherichia coli (ESBL, carbapenemase-producing)</td>
</tr>
<tr>
<td>Enterococci (including VRE)</td>
<td>Klebsiella species (ESBL, carbapenemase-producing)</td>
</tr>
<tr>
<td>Staphylococcus aureus (including MRSA)</td>
<td>Pseudomonas aeruginosa (MDR)</td>
</tr>
<tr>
<td>Streptococcus species (including viridans group)</td>
<td>Enterobacter species</td>
</tr>
<tr>
<td>Citrobacter species</td>
<td></td>
</tr>
<tr>
<td>Xanthomonas maltophilia</td>
<td></td>
</tr>
<tr>
<td>Acinetobacter species (MDR)</td>
<td></td>
</tr>
</tbody>
</table>

We have to be cognizant of resistant pathogens in the 21st century.
Fever & Neutropenia: Summary of Epidemiology

- Gram-positive pathogens now predominate in documented bloodstream infections.
 - CoNS accounts for majority but is associated with minimal virulence.

- Resistant organisms increasingly are causing infections:
 - PCN-R viridans streptococci
 - MRSA
 - VRE
 - MDR GNR

- No microbiologic diagnosis is established in majority of cases.
IDSA Guidelines: Management Principles

- Every patient with F&N should receive **prompt** empiric antibiotic therapy after presentation.

- IDSA Guidelines provide a framework for antimicrobial management.
 - Revision in late 2010.
 - Require constant re-evaluation as cancer therapies and related infections change over time.

- Changes in 2010 guidelines:
 - Emphasis on risk stratification (high vs. low-risk)
 - Empiric vs pre-emptive antifungal therapy
 - Updates on infection prevention

IDSA Guidelines: Initial Evaluation

- **HPI**
 - Nature, cycle/course of chemotherapy
 - Prophylactic agents, steroids, other immunosuppressive agents, growth factors
 - Previous infections (e.g., fungal infections, infections due to a resistant pathogen), previous procedures, allergies
 - Site-specific symptoms

- **Workup**
 - Blood cultures x2 (peripheral, catheter)
 - CBC, comprehensive metabolic panel
 - Chest radiograph (2010: if s/sx of lung infection)
 - Other cultures (urine, stool, skin lesions, drainage from any site) as warranted

Clinical Manifestations

- Cellulitis
- Ecthyma gangrenosum
- Marrow aspiration Site
- Perirectal abscess

Photos (clockwise) courtesy of Alison G. Freifeld, MD and Kent A. Sepkowitz, MD
Biomarkers to predict adverse events in febrile neutropenia

- Procalcitonin
- IL-6
- IL-8
- Mannose-binding lectin
- Presepsis (sCD14)

PCT in Diagnosis of Severe Infection in Patients with Febrile Neutropenia: Systematic Review and Meta-Analysis

- 27 studies, 1960 FN cases with PCT analysis
- 13 studies, 1710 FN cases with CRP; 5 studies, 314 FN cases with IL-6 analysis
- PCT had higher positive likelihood ratio (5.49) than CRP (1.82) and IL-6 (3.68).
- However, PCT also had high negative likelihood ratio (0.4) making decisions to stop antibiotics based on PCT alone difficult

Initial Antimicrobial Regimen for Neutropenic Fever

- Cover enteric and non-fermenting gram-negative bacilli
 - Meropenem 1 g IV q 8h or other carbapenem OR
 - Piperacillin-tazobactam 4.5 g IV q 6h OR
 - Cefepime 2 g IV q 8h (consider continuous infusion)
 - Add Metronidazole 500 mg IV q 8h if anaerobic infection associated with intra-abdominal infection, typhlitis, necrotizing soft tissue infections
- Add vancomycin 15 mg/kg IV q 12h until MRSA ruled out; if vanco intolerant, use linezolid 600 mg IV q 12h

Ciprofloxacin + Amoxicillin/clavulanate

- Oral
- IV

Low risk

Vancomycin not needed

High risk

Vancomycin needed

- Hemodynamic instability or other evidence of severe sepsis
- Pneumonia documented radiographically
- Positive blood culture for gram-positive bacteria, before final identification and susceptibility testing is available
- Clinically suspected serious catheter-related infection (eg, chills or rigors with infusion through catheter and cellulitis around the catheter entry/exit site)
- Skin or soft-tissue infection at any site
- Colonization with methicillin-resistant Staphylococcus aureus,
- Vancomycin-resistant enterococcus, or penicillin-resistant Streptococcus pneumoniae
- Severe mucositis, if fluoroquinolone prophylaxis has been given and ceftazidime is employed as empirical therapy

Selecting the Right Agent: Factors to Consider

- Antimicrobial spectrum
 - Gram-positive coverage (need for vancomycin?)
 - Anaerobic coverage seldom indicated

- Adverse events
 - Incidence of *C. difficile* infections
 - Drug allergies

- Antimicrobial resistance
 - Local susceptibility patterns
 - Incidence of MRSA, VRE, viridans streptococci
 - Incidence of MDR GNR
Selecting the Right Agent: Factors to Consider

- Aminoglycosides or FQs should NOT be used as monotherapy.
- Double β-lactam regimens (e.g., pip/tazo plus aztreonam) are discouraged due to $$ and toxicity without added benefit.
• Combination empirical therapy for neutropenic patients with severe sepsis (grade 2B) and for pts with difficult to treat, MDR bacterial pathogens (e.g., Acinetobacter and Pseudomonas spp. (2B).
• Duration of therapy typically 7–10 days.
• Longer courses may be appropriate in pts who have a slow clinical response, undrainable foci of infection, bacteremia with S. aureus; some fungal and viral infections or immunologic deficiencies, including neutropenia (2C)

Crit Care Med 2013;31:946-55
Intensive Care Med 2013;39:165-228
De-escalation of antimicrobial treatment in neutropenic patients with severe sepsis: results from an observational study

44% De-escalation Rate
Antimicrobial de-escalation in septic cancer patients: is it safe to back down?

- n=105 adult cancer pts from ED to ICU, 01/2008-03/2013.
- 23% were neutropenic.
- 61 (58%) patients had de-escalation by ICU day 5.
- De-escalation group:
 - Shorter ICU LOS (8.1 vs. 11.2 days, P = 0.006)
 - Shorter Hospital LOS (17.1 vs. 23.4 days, P = 0.04)
 - ICU Mortality: 18% vs. 23% (0.62)
 - Hospital Mortality: 34% in both groups

Empiric Antifungal Therapy

- Low-risk patients: risk of invasive fungal infections is low, so routine use of empiric antifungal therapy is not warranted
- High-risk: empiric therapy recommended for pts with persistent or recurrent fever after 4-7 days of antibiotics, and whose overall duration of neutropenia is >7 days
 - Disseminated candidiasis is main concern
 - Monitor BD-glucan and serum galactomannan and check cultures for other opportunistic fungi
 - Rx: Voriconazole, Caspofungin, Amphotericin B lipid complex or liposomal amphotericin B

Antifungal Prophylaxis in Neutropenic Patients Receiving Chemotherapy and Stem Cell Transplant Recipients at Risk of Candidiasis

• For patients with chemotherapy-induced neutropenia:
 – Fluconazole 400 mg (6 mg/kg) daily (A-I)
 – Posaconazole 200 mg 3 times daily (A-I)
 – Caspofungin 50 mg daily (B-II)
 – Itraconazole 200 mg PO daily: effective alternative (A-I) but little advantage and less well tolerated.

• For SCT recipients with neutropenia:
 – Fluconazole 400 mg (6 mg/kg) daily
 – Posaconazole 200 mg 3 times daily
 – Micafungin 50 mg daily (A-I).

IDSA Guidelines: Colony-Stimulating Factors (CSFs)

- Prophylactic use should be considered for patients in whom the anticipated risk of fever and neutropenia is >20% (A-II).

- Not generally recommended for treatment of established fever & neutropenia (B-II).

Immunosuppression in Sepsis

Hotchkiss RS, Lancet Infect Dis 2013;13:260-68
Immunosuppression in Sepsis

- The longer the sepsis continues, the more likely the patient is to develop profound immunosuppression.

Hotchkiss RS, Lancet Infect Dis 2013;13:260-68
IL-7 Immunotherapy in Sepsis

Hotchkiss RS, Lancet Infect Dis 2013;13:260-68
Anti-PD-1 Immunotherapy in Sepsis

Hotchkiss RS, Lancet Infect Dis 2013;13:260-68
Mesenchymal Cells in Patients With Septic Shock and Severe Neutropenia: Promising?

- Significantly reduced mortality in septic mice receiving appropriate antimicrobial therapy.
- Reduces systemic inflammatory cytokine levels in mice, down-regulation of IL-10, IL-6.
- Bacterial clearance greater in MSC-treated mice.
- Safety shown by GVHD Rx MSCs in pts after HSCT.

Summary: Neutropenic Sepsis

- Cardinal signs of inflammation often lacking making early diagnosis a major challenge.
- Surviving Sepsis & IDSA guidelines provide a framework for diagnosis and antimicrobial Rx.
- Early effective antimicrobial Rx and hemodynamic resuscitation to reverse organ failure are keys to improving outcomes.
- Need for novel biomarkers & innovative treatment strategies (IL-7, anti-PD1, MSC).
Thank You

pastores@mskcc.org