Brain Protection After Cardiac Arrest

Tiffany Chang, MD
Assistant Professor of Neurosurgery and Neurology
Program Director, Neurocritical Care Fellowship Program
University of Texas Medical School at Houston
1. Examine the indications for targeted temperature management after cardiac arrest
2. Evaluate the impact of therapeutic hypothermia on prognosis

OBJECTIVES
I have received research funding from Haemonetics Inc. and honoraria from Bard Medical.

DISCLOSURES
United States 2013

Out-of-Hospital Cardiac Arrest

<table>
<thead>
<tr>
<th>Incidence</th>
<th>Bystander CPR (overall)</th>
<th>Survivor rate* (overall)</th>
</tr>
</thead>
<tbody>
<tr>
<td>359,400</td>
<td>40.1%</td>
<td>9.5%</td>
</tr>
</tbody>
</table>

In-Hospital Cardiac Arrest

<table>
<thead>
<tr>
<th>Incidence</th>
<th>Survival rate*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adults</td>
</tr>
<tr>
<td>209,000</td>
<td>23.9%</td>
</tr>
</tbody>
</table>

*survival to hospital discharge
Mechanisms of brain injury

Sudden loss of blood flow

Global hypoxic-ischemic injury

Reperfusion injury
Hypothermia

Destructive processes following ischemia/reperfusion that can be prevented or significantly mitigated by hypothermia.

Black lettering = early mechanisms
Gray lettering = late mechanisms

The three phases of hypothermia treatment

Induction phase: Start of cooling

Beginning of maintenance phase.

Beginning of re-warming phase.

Maintain controlled normothermia after hypothermia phase.

Core temperature (°C)

Cooling rate = 3.0°C/hour
= (36.0°C - 32.0°C/1.33 hr)

Target temp = 32.0°C

Elapsed time (minutes)

80 min

Target temp 0.1–0.5°C

• 275 survivors of witnessed out-of-hospital VT/VF arrest
• Mild therapeutic hypothermia 32-34°C for 24 hours
• Passive rewarming
• Primary endpoint: favorable neurologic outcome (CPC 1-2) at 6 months

<table>
<thead>
<tr>
<th>Cerebral Performance Category</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Good recovery</td>
</tr>
<tr>
<td>2</td>
<td>Moderate disability</td>
</tr>
<tr>
<td>3</td>
<td>Severe disability</td>
</tr>
<tr>
<td>4</td>
<td>Vegetative state</td>
</tr>
<tr>
<td>5</td>
<td>Death</td>
</tr>
</tbody>
</table>
Table 2. Neurologic Outcome and Mortality at Six Months.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Normothermia</th>
<th>Hypothermia</th>
<th>Risk Ratio (95% CI)*</th>
<th>P Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no./total no. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Favorable neurologic outcome‡</td>
<td>54/137 (39) 75/136 (55)</td>
<td>1.40 (1.08–1.81)</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>76/138 (55) 56/137 (41)</td>
<td>0.74 (0.58–0.95)</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

*The risk ratio was calculated as the rate of a favorable neurologic outcome or the rate of death in the hypothermia group divided by the rate in the normothermia group. CI denotes confidence interval.

†Two-sided P values are based on Pearson’s chi-square tests.

‡A favorable neurologic outcome was defined as a cerebral-performance category of 1 (good recovery) or 2 (moderate disability). One patient in the normothermia group and one in the hypothermia group were lost to neurologic follow-up.

NNT = 6

p=0.02
• 77 patients resuscitated from VF arrest
• Cooling initiated in field
• Target temperature 33°C
• Active rewarming at 18 hours
• **Primary outcome**: based on disposition
 – Good outcome: discharge to home or rehab facility
 – Poor outcome: death in hospital or discharge to long-term nursing facility

Good outcome

- Hypothermia: 21/43 (49%)
- Normothermia: 9/34 (26%)
- $p=0.046$

No significant differences in mortality
Therapeutic Hypothermia After Cardiac Arrest
An Advisory Statement by the Advanced Life Support Task Force of the International Liaison Committee on Resuscitation

Summary: ILCOR Recommendations
On the basis of the published evidence to date, the ILCOR ALS Task Force has made the following recommendations:

• Unconscious adult patients with spontaneous circulation after out-of-hospital cardiac arrest should be cooled to 32°C to 34°C for 12 to 24 hours when the initial rhythm was VF.
• Such cooling may also be beneficial for other rhythms or in-hospital cardiac arrest.
950 patients OHCA

Any initial cardiac rhythm

Maintained at target temperature for 36 hours

Rewarmed to 37°C and maintained <37.5°C until 72 hours

33 or 36 degrees?

More liberal goal of 36 with aggressive fever control may have similarly beneficial effect

When to start?

- 1359 patients
- OHCA all causes
- Effectively lowered temperature at time of arrival to ED
- No differences in outcome or survival
- Higher rates of repeat CA in the field, longer time to arrival, increased pulmonary edema

What if not VT/VF?

• Initial rhythm PEA/asystole in 60% OHCA
• Testori et al.
 – 374 non-shockable OHCA (135 hypothermia, 239 non-hypo)
 – Improved neurologic outcome (35% vs. 23%; p=0.024)
 – Decreased mortality (61% vs. 75%; p=0.025)
• Lundbye et al.
 – Location of arrest (in- or out-of-hospital) did not impact outcomes

No suggestion that hypothermia is less safe in PEA/asystole or in-hospital arrest and may improve outcomes

Shivering

Metabolic Impact of Shivering During Therapeutic Temperature Modulation
The Bedside Shivering Assessment Scale

Neeaj Badjatia, MD, MSc; Evangelia Strongilis, RD; Errol Gordon, MD; Mary Prescutti, RN; Luis Fernandez, MD; Andres Fernandez, MD; Manuel Buitrago, MD, PhD; J. Michael Schmidt, PhD; Noeleen D. Ostapkovich, MSc; Stephan A. Mayer, MD, FCCM

Table 1. The Bedside Shivering Assessment Scale

<table>
<thead>
<tr>
<th>Score</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>None: no shivering noted on palpation of the masseter, neck, or chest wall</td>
</tr>
<tr>
<td>1</td>
<td>Mild: shivering localized to the neck and/or thorax only</td>
</tr>
<tr>
<td>2</td>
<td>Moderate: shivering involves gross movement of the upper extremities (in addition to neck and thorax)</td>
</tr>
<tr>
<td>3</td>
<td>Severe: shivering involves gross movements of the trunk and upper and lower extremities</td>
</tr>
</tbody>
</table>

Shivering Treatment

<table>
<thead>
<tr>
<th>STEP</th>
<th>Intervention</th>
<th>Dose</th>
</tr>
</thead>
</table>
| 0 | Acetaminophen, Buspirone, Magnesium Sulfate, Skin Counterwarming | 650 - 1000 mg every 4-6 hours
30 mg every 8 hours
IV replacement for goal serum level (3-4 mg/dL)
43 C / MAX Temp |
| 1 | Meperdine, Fentanyl, Dexmedetomidine | 50-100mg IM or IV
Infusion starting dose 25mcg/hr
Loading 1 mcg/kg, then 0.3-1.5 mcg/hr |
| 2 | Propofol | Propofol 50 - 75 mcg/kg/min |
| 3 | Vecuronium | 0.1-0.15 mg/kg IV every hour |
Practice Parameter: Prediction of outcome in comatose survivors after cardiopulmonary resuscitation
(an evidence-based review)

Report of the Quality Standards Subcommittee of the American Academy of Neurology

E.F.M. Wijdicks, MD; A. Hijdra, MD; G.S. Young, MD; C.L. Bassetti, MD; and S. Wiebe, MD

Prognosis

Prognostication after hypothermia

Questions

– How long to wait?
 • 72 hours after rewarming
– Composite of findings?
– Effect of TTM?

De Georgia M, Raad B. Continuum (Minneap Minn). 2012;18(3):515-531
Conclusions

• Comatose survivors of CA should undergo TTM to either 33°C or 36°C
• Initiate TTM at the time of hospital presentation
 – Cooling prior to hospital arrival has not been shown to provide additional benefit
• Fever should be avoided
• Shivering should be treated
• Select patients with non-shockable rhythm or in-hospital arrest should be offered TTM
• Consider delayed prognostication beyond traditional 72 hour time period
• Review guidelines